PRODUCT DESCRIPTION TIMING BELTS IN optibelt OMEGA PROFILE STANDARD PROPERTIES

All optibelt OMEGA timing belts have inherent resistance to oil, heat, cold, ozone and tropical conditions. Special labelling is not required.

Oil resistance

The limited oil resistance prevents the damaging effects of mineral oils and greases, as long as these substances are not in permanent contact with the timing belt and/or are not present in large quantities. With increased demands for resistance, e.g. to mineral oils, the performance of the optibelt OMEGA timing belts can be improved by using special belt constructions. Please contact the optibelt Application Engineering Department.

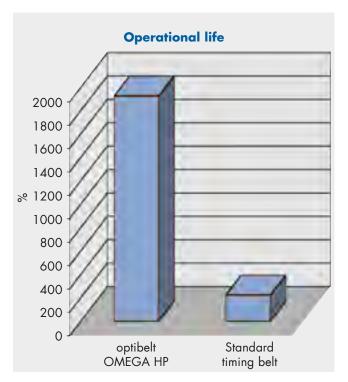
Temperature resistance

The timing belt can withstand ambient temperatures from ≈ -30 °C to +100 °C. Temperatures outside this range lead to premature ageing and embrittlement of the timing belts and thus to their premature failure. The temperature resistance of optibelt OMEGA timing belts can be extended using special belt constructions, e.g. up to +140 °C. Please contact the OPTIBELT Application Engineering Department.

Antistatic properties

Antistatic properties enable the safe discharge of electrostatic charges. This charging can have such a strong impact on timing belts with insufficient electrical conductivity that there is the danger of ignition due to sparks. The use of antistatic timing belts requires that the properties be checked in accordance with ISO 9563, and is confirmed by the issue of an inspection certificate. OMEGA HP and OMEGA HL timing belts in profiles 8M and 14M as well as OMEGA FAN POWER are antistatic according to ISO 9563 by standard and are thus labelled accordingly.

Noise emission

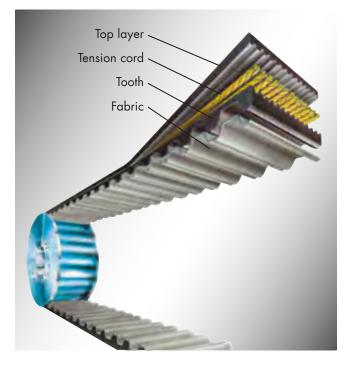

The optimized tooth shape and the indent in the tooth tip of the optibelt OMEGA promote a significantly lower noise level. In combination with the newly developed materials, the noise level is further reduced, even at high speeds and with high belt tensions.

Operational life

Belt designs with increased capacity can exceed the potential operational life of standard designs many times over, particularly for highly loaded or overloaded drives. Example: Dynamic tests with optibelt OMEGA HP show that the running times, compared to standard timing belts, are up to 18 times higher.

Efficiency

The specially developed tooth fabric and the flexible belt design make possible a virtually frictionless drive with an efficiency of up to 98%.



Application example: roller path

PRODUCT DESCRIPTION optibelt OMEGA HP TIMING BELTS

Top layer

A durable and flexible top layer protects the tension cord from external influences. In addition, the polychloroprene compound is reinforced with aramid fibres and has a degree of resistance to mineral oils and humidity as well as protection from wear and tear due to friction.

Tension cord

The tension cords are reinforced pairs of counter twisted glass fibres. These tension cords have very high tensile strength, very high flexibility and minimal stretch.

Teeth

The teeth consist of a new compound reinforced with aramid fibres, which guarantee high shear strength. They are shaped and exactly spaced in such a way that they mesh perfectly with the pulley teeth with minimal friction. The indent in the tooth guarantees quiet running.

Fabric

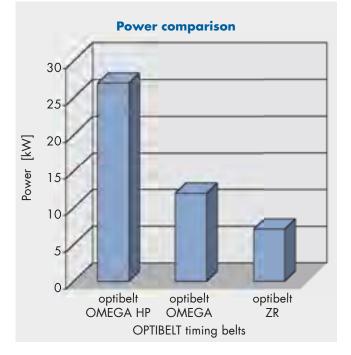
The specially developed polyamide fabric stands out due to its extraordinarily low frictional coefficient and its low noise characteristics.

It also protects the teeth from early wear and tear and prevents tooth shear.

The high performance timing belt for high load, high speed machine drives

Compact synchronous drives are used in the whole field of mechanical drive engineering. High power transmission capability, good running characteristics and high operational safety are only some of the demands made on timing belts. Modern manufacturing techniques and quality inspections during all processing stages ensure products with highest reliability. optibelt OMEGA HP high performance timing belts have been especially developed for high load, low and high speed drives that are evenly loaded without heavy shock. Improved materials and optimised production form the basis for this very high performance range.

optibelt OMEGA, OMEGA HP and OMEGA HL timing belts are used in optibelt ZRS HTD[®] timing belt pulleys or in optibelt ZRS RPP[®] timing belt pulleys. For applications using other pulleys, please contact the OPTIBELT Application Engineering Department.


Application example: test bench

The new high performance timing belt optibelt OMEGA 5M HP

In the field of the high performance timing belts the optibelt OMEGA 5M HP has been developed for small pulley diameters, short centre distances and high speeds. The optibelt OMEGA 5M HP transmits up to 3 times the power of an optibelt OMEGA 5M (an increase in power of up to 200%). The performance level of the optibelt OMEGA 5M HP roughly corresponds with the level of the considerably larger section optibelt OMEGA 8M – with the same pulley diameters.

PRODUCT DESCRIPTION optibelt OMEGA HP TIMING BELTS

Overview of the advantages and characteristics of the optibelt OMEGA HP

- dimensionally stable structure with high flexibility
- low permanent and elastic stretch of the cord
- friction and abrasion resistant fabric with high shear strength
- approximately double power transmission capability (profile 5M HP approximately trebles the power transmission capacity) compared to OMEGA timing belts in their standard design
- suitable for low and high speed, high load drives
- good resistance and smooth operation, low and medium shock load
- large range of applications
- electrical antistatic according to ISO 9563 confirmed on request

Advantages and characteristics of a drive with optibelt OMEGA HP timing belts in these application areas

- considerably reduced drive volume compared to OMEGA timing belts in standard design
- reduced costs for belts and pulleys
- greater options for drive design
- reduced shaft diameters and smaller bearings
- reduced running noise levels
- improved efficiency

Significant system cost reduction and high operational reliability for even greater economic efficiency in new drives

For additional advantages and characteristics, see optibelt OMEGA on page 20.

Power ratings overview

Profile and design	8М НР	8M	н
Pitch [mm]	8	8	12.7
Width [mm]	20	20	19.05
Pulley diameter [mm]	96.77	96.77	97.02
Speed [min ⁻¹]	2850	2850	2850
Nominal power [kW]	24.4	10.8	6.0

Preferred application areas

- textile machines
- machine tools
- compressors
- printing machines
- wood working machines
- paper machines

PRODUCT DESCRIPTION optibelt OMEGA HP TIMING BELTS **STANDARD PRODUCT RANGE**

	Profile	ЗМ НР
	t [mm]	3.0
	h _s [mm]	2.3
t	h _t [mm]	1.1

optibelt OMEGA 3M HP											
Belt designation	Pitch length [mm]	Number of teeth	Belt designation	Pitch length [mm]	Number of teeth	Belt designation	Pitch length [mm]	Number of teeth			
111 3MHP• 129 3MHP• 141 3MHP• 144 3MHP 150 3MHP•	111.00 129.00 141.00 144.00 150.00	37 43 47 48 50	294 3MHP• 300 3MHP 312 3MHP 315 3MHP• 318 3MHP	294.00 300.00 312.00 315.00 318.00	98 100 104 105 106	600 3MHP• 606 3MHP• 615 3MHP• 633 3MHP• 669 3MHP	600.00 606.00 615.00 633.00 669.00	200 202 205 211 223			
159 3MHP• 165 3MHP• 168 3MHP• 171 3MHP• 174 3MHP	159.00 165.00 168.00 171.00 174.00	53 55 56 57 58	330 3MHP 333 3MHP• 339 3MHP• 345 3MHP• 357 3MHP	330.00 333.00 339.00 345.00 357.00	110 111 113 115 119	675 3MHP• 711 3MHP• 738 3MHP• 804 3MHP• 816 3MHP•	675.00 711.00 738.00 804.00 816.00	225 237 246 268 272			
177 3MHP 180 3MHP• 183 3MHP• 186 3MHP• 192 3MHP•	177.00 180.00 183.00 186.00 192.00	59 60 61 62 64	363 3MHP 366 3MHP• 384 3MHP 390 3MHP• 420 3MHP	363.00 366.00 384.00 390.00 420.00	121 122 128 130 140	843 3MHP• 882 3MHP• 888 3MHP• 1062 3MHP• 1569 3MHP•	843.00 882.00 888.00 1062.00 1569.00	281 294 296 354 523			
195 3MHP• 201 3MHP 204 3MHP• 207 3MHP 210 3MHP	195.00 201.00 204.00 207.00 210.00	65 67 68 69 70	426 3MHP• 435 3MHP• 447 3MHP 462 3MHP• 474 3MHP	426.00 435.00 447.00 462.00 474.00	142 145 149 154 158	1587 3MHP• 1692 3MHP•	1587.00 1692.00	529 564			
213 3MHP• 219 3MHP• 225 3MHP 237 3MHP 240 3MHP	213.00 219.00 225.00 237.00 240.00	71 73 75 79 80	480 3MHP• 486 3MHP• 495 3MHP• 501 3MHP 513 3MHP	480.00 486.00 495.00 501.00 513.00	160 162 165 167 171						
246 3MHP• 249 3MHP• 252 3MHP• 255 3MHP 267 3MHP•	246.00 249.00 252.00 255.00 267.00	82 83 84 85 89	519 3MHP• 522 3MHP• 525 3MHP• 531 3MHP• 537 3MHP•	519.00 522.00 525.00 531.00 537.00	173 174 175 177 179						
276 3MHP 282 3MHP• 285 3MHP 288 3MHP• 291 3MHP•	276.00 282.00 285.00 288.00 291.00	92 94 95 96 97	558 3MHP• 564 3MHP• 570 3MHP• 582 3MHP• 597 3MHP	558.00 564.00 570.00 582.00 597.00	186 188 190 194 199						

Standard width: 6 mm, 9 mm, 15 mm (Further sizes and special width ranges on request) • Not available ex stock

Order example:

TIMING BELTS: optibelt OMEGA HP 225 3M HP 9

225 = 225 mm pitch length 3M HP = profile and design 9 = 9 mm belt width

POWER RATINGS optibelt **OMEGA HP** TIMING BELTS PROFILE AND DESIGN 3M HP

Table 16

Nominal power P _N [W] for profile and design 3M HP and a timing belt width of 9 mm															
Speed of the								th on th							
small pulley	10	12	14	16	18	20			32	40		56	64	72	80
n _k [min ⁻¹]								f the sm							
	9.55	11.46	13.37	15.28	17.19	19.10	22.92	26.74	30.56	38.20	45.84	53.48	61.12	68.75	76.39
20 40 60 100 200	2.7 5.2 7.6 12.3 23.3	3.4 6.5 9.5 15.3 28.9	4.1 7.8 11.4 18.4 34.8	4.8 9.2 13.4 21.7 40.9	5.6 10.7 15.5 25.1 47.4	6.4 12.1 17.7 28.7 54.1	8.0 15.2 22.2 36.0 67.7	18.6	11.5 21.8 31.8 50.9 95.5	14.9 28.5 41.4 66.1 125.0	18.4 35.0 51.0 81.6 154.7	21.6 41.2 60.1 96.3 183.0	46.7 68.0 109.3	27.3 52.0 75.8 122.2 231.6	30.0 57.3 83.5 134.7 255.9
300 400 500 600 700	31.6 39.6 46.3 52.3 58.6	39.4 49.4 58.1 65.6 73.9	47.7 59.7 70.6 80.1 90.0	56.3 70.6 83.6 95.3 106.9	65.6 82.0 97.3 112.1 125.6	74.7 93.3 111.3 128.1 143.7	93.8 116.7 138.6 160.0 180.5	113.6 141.0 167.6 192.4 217.4	133.0 165.6 197.0 226.5 254.7	173.9 216.0 255.8 294.0 330.1	215.1 268.0 317.1 363.6 407.7	253.9 315.6 372.8 426.9 478.8	287.6 358.2 423.0 485.0 544.0	321.9 400.2 473.3 541.8 607.6	354.5 441.5 521.3 597.5 669.7
800 900 950 1000 1200	66.1 71.5 74.0 76.5 86.3	82.8 89.0 92.7 96.3 109.3	100.2 109.3 113.3 117.4 133.7	118.6 129.7 135.0 140.3 160.0	138.5 152.0 157.8 164.5 187.7	158.5 173.5 180.8 188.1 214.8	199.2 217.4 226.5 235.7 270.7	240.6 262.8 273.4 284.1 326.5	281.3 307.9 320.6 333.2 382.2	365.0 399.0 415.0 432.0 496.0	451.0 491.0 512.0 531.0 609.0	529.0 577.0 600.0 624.0 713.0	601.0 655.0 682.0 708.0 809.0	671.0 731.0 761.0 791.0 902.0	739.0 807.0 839.0 871.0 994.0
1400 1450 1600 1800 2000	96.0 98.5 106.4 117.0 125.0	122.0 124.8 135.2 148.0 158.0	149.7 153.7 164.9 180.0 193.0	179.1 183.6 197.4 215.0 231.0	211.0 216.8 232.5 253.0 272.0	241.7 247.8 266.6 290.0 312.0	303.4 311.9 335.1 365.0 395.0	366.0 375.0 404.3 440.0 475.0	428.2 439.1 473.1 515.0 557.0	554.0 569.0 611.0 667.0 718.0	680.0 698.0 749.0 816.0 879.0	797.0 818.0 877.0 955.0 1029.0	927.0 995.0	1009.0 1034.0 1110.0 1207.0 1298.0	1139.0 1221.0 1326.0
2400 2850 3200 3600 4000	141.0 155.0 170.0 182.0 194.0	178.0 198.0 216.0 233.0 248.0	219.0 245.0 266.0 287.0 308.0	263.0 296.0 320.0 347.0 372.0	309.0 350.0 379.0 411.0 441.0	356.0 403.0 436.0 473.0 508.0	450.0 509.0 552.0 599.0 644.0	543.0 614.0 665.0 722.0 776.0	845.0	923.0 1001.0 1084.0	1125.0 1218.0 1317.0	1313.0 1419.0 1531.0	1322.0 1484.0 1601.0 1724.0 1837.0	1648.0 1775.0 1907.0	1792.0 1940.0 2079.0
5000 6000 7000 8000 10000	221.0 246.0 265.0 284.0 320.0	284.0 317.0 344.0 368.0 418.0	352.0 395.0 429.0 462.0 515.0	427.0 479.0 523.0 564.0 632.0	507.0 571.0 625.0 676.0 759.0	587.0 661.0 724.0 784.0 880.0	919.0 994.0	896.0 1011.0 1105.0 1194.0 1334.0	1178.0 1286.0 1385.0	1495.0 1621.0 1733.0	1788.0 1919.0 2030.0	2045.0 2169.0 2264.0	2359.0 2420.0	2440.0 2506.0	2587.0 2598.0
12000 14000	349.0 347.0	452.0 458.0	566.0 583.0	690.0 721.0	822.0 869.0			1428.0 1476.0			2064.0				

Power ratings for other belt widths can be calculated by multiplying by the width correction factors.

Width correction factor										
Profile and design 3M HP										
Belt width [mm]	3	Standard 6	Standard 9	12	Standard 15	20	25			
Factor	0.28	0.61	1.00	1.44	1.87	2.63	3.40			